SIXTH SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION, MARCH 2023

Mathematics

MAT 6B 13(E02)—LINEAR PROGRAMMING

(2017—2018 Admissions)

Time: Three Hours

Maximum Marks: 80

Section A

Answer all questions.
Each question carries 1 mark.

- 1. What is a slack variable?
- 2. What is a degenerate solution of an L.P.P.?
- 3. What is the difference between a feasible solution and a basic feasible solution of an L.P.P.?
- 4. Define a convex set.
- 5. Define a hyperplane in \mathbb{R}^n .
- 6. Write the names of any two methods to solve a transportation problem.
- 7. Write the following L.P.P. in standard form:

Minimise
$$Z = 4x_1 - x_2 + x_3$$

subject to
 $x_1 + x_2 - x_3 \ge 1$
 $4x_1 + x_2 + x_3 \le 1$
 $x_1, x_2, x_3 \ge 0$.

8. Show that $x_1 = 1$, $x_2 = 1$, $x_3 = 0$ is a feasible solution of the L.P.P. :

- 9. Write the necessary and sufficient condition for a basic feasible solution to a L.P.P. to be an optimum (maximum).
- 10. When we say that an 'Assignment problem' is unbalanced?
- 11. What is degeneracy in a transportation problem?
- 12. Explain why we not use 'Transportation Algorithm' to solve an 'Assignment Problem'.

 $(12 \times 1 = 12 \text{ marks})$

Turn over

C 40190

Section B

Answer any **nine** questions. Each question carries 2 marks.

- 13. Write a short note on 'North-West Corner Rule'.
- 14. Write a short note on 'The Hungerian Method'.
- 15. What are 'Unbalanced Transportation Problems'? How are they solved?
- 16. Write the dual of the following L.P.P.:

$$\begin{aligned} \text{Maximise Z} &= 3x_1 + 2x_2 \\ \text{s.t.} & x_1 + x_2 \leq 4 \\ x_1 - x_2 \leq 2 \\ x_1, x_2 \geq 0. \end{aligned}$$

17. Show that the following L.P.P. has an unbounded solution:

Maximise
$$Z = 4x_1 + x_2$$

s.t. $x_1 + x_2 \ge 1$
 $x_1 \ge 2$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$.

- 18. Show that intersection of two convex set is convex.
- 19. Find a basic feasible solution of the following transportation problem by using North-West Corner Rule:

$$\begin{array}{c|ccccc} D_1 & D_2 & D_3 \\ \hline O_1 & 2 & 7 & 4 & 5 \\ O_2 & 3 & 3 & 1 & 8 \\ O_3 & 5 & 4 & 7 & 7 \\ O_4 & 1 & 6 & 2 & 14 \\ \hline & 7 & 9 & 18 & \\ \hline \end{array}$$

- 20. Write $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as a linear combination of $B = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $C = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- 21. Show that the set $A = \{(x_1, x_2, x_3) | x_1 + x_2 x_3 = 0\}$ is a convex set.
- 22. Given that the vectors $V_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $V_2 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}$ and $V_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ are linearly dependent. Find the value

of 'a'.

- 23. Show that there exists only a finite number of basic feasible solutions to a L.P.P.
- 24. Solve the Assignment problem:

 $(9 \times 2 = 18 \text{ marks})$

Section C

Answer any **six** questions. Each question carries 5 marks.

25. Solve:

26. Use Simplex method to solve the following L.P.P.:

27. Show that the following L.P.P. has no solution:

$$\begin{array}{llll} \text{Maximise Z} = 4x_1 + x_2 & \\ \text{subject to} & x_1 + x_2 \geq & 1 \\ & 2x_1 - 2x_2 \leq & 1 \\ & x_1 \geq 5 \\ & x_1, x_2 \geq 0. \end{array}$$

28. Find an initial basic feasible solution using Vold's method to the following transportation problem:

Turn over

4 C 40190

29. Solve the following Assignment problem:

		A	В	C	D
	I	12	30	21	15
Job	II	18	33	9	31
	III	44	25	24	21
	IV	23	30	28	14

- 30. Show that a hyperplane is a convex set.
- 31. Show that $H = \{x \in \mathbb{R}^n / \mathbb{C} \times \geq z, \text{ for } \mathbb{C} \in \mathbb{R}^n \text{ and } \mathbb{Z} \in \mathbb{R} \}$ is a convex set.
- 32. Write the steps to solve an L.P.P. by using Simplex method.
- 33. Prove that dual of the dual is the primal.

 $(6 \times 5 = 30 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 10 marks.

- 34. Prove that a hyperplane is a closed set.
- 35. Solve the Assignment problem given below:

	Ι	II	III	IV	V	VI
A	9	22	58	11	19	27
В	43	78	72	50	63	48
\mathbf{C}	41	28	91	37	45	33
D	74	42	27	49	39	32
\mathbf{E}	36	11	57	22	25	18
\mathbf{F}	3	56	53	31	17	28

36. Use Simplex method to solve:

Maximise Z =
$$107x_1 + x_2 + 2x_3$$

subject to the constraints

 $(2 \times 10 = 20 \text{ marks})$